
NASA Identifier: 420686main_4
In the accelerating world of electric and natural light research, most fascinating of all is the rocket science of lighting technology: the astronaut-friendly LED lighting system being developed and tested for astronauts aboard the International Space Station. “If it’s good enough for the space station,” says circadian neuroscientist Steven W. Lockley, “it’s good enough for your house.”
Scientists’ journeys are a never-ending process of discovery. And the findings don’t get any bigger than that of a new photoreceptor system in not just the human eye, but in the eyes of all mammals.
As I have learned from my interviews with numerous scientists over the past three years, the most exciting new frontier in light research has to do with this photoreceptor system: the eye’s nonvisual system, which performs the critical job of detecting the wavelengths of light that drive our biology and behavior through the resetting of the master 24-hour — the circadian — clock in the brain.
Circadian neuroscientist Steven W. Lockley explains: Unlike the visual system, this non-image-forming system provides a measurement of environmental light-dark cycles. It tells the brain whether it’s night or day, or winter or summer, which the brain uses to control our daily and seasonal biology.
The workings of this nonvisual system are shaping health and light research around the globe, from medical technology in hospital and healthcare settings, to lighting for professional athletes and sports team facilities, to comfort in our homes.
And then, most fascinating of all, there’s the rocket science of lighting technology: the astronaut-friendly LED lighting being developed and tested for the International Space Station. This highly sophisticated LED wavelength technology is designed to improve astronauts’ sleep, alertness, safety, and work performances in conjunction with the nonvisual light-sensing system of the eye.
A talk I gave in August 2014 at the Better Lights for Better Nights Conference in Dripping Springs, Texas, focused on this groundbreaking research that holds huge implications for lighting applications on Earth.
The bulk of the materials for my presentation were provided by Lockley, an Associate Professor of Medicine at Harvard Medical School and a neuroscientist in the Division of Sleep Medicine and Departments of Medicine and Neurology at Brigham and Women’s Hospital; and Dr. Smith Johnston, then-director of the Aerospace and Occupational Medicine Clinics at NASA’s Johnson Space Center in Houston.
Lockley, a circadian rhythms and light researcher, is a lead adviser of LED lighting for the space station. Everywhere electric light is used, Lockley says, we can do a better job of it. “We’re at the start of a revolution for the application of light,” Lockley told me in a phone interview. “If it’s good enough for the space station, it’s good enough for your house.”